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ABSTRACT 

This paper deals with the Bayesian estimation of a function of the unknown parameter θ of the Generalized 

Negative Binomial Distribution (GNBD) and Generalized Logarithmic Series Distribution (GLSD).These 

distributions are particular cases of Modified Power Series distribution (MPSD).The prior distribution for the 

unknown parameter θ varies from distribution to distribution, depending upon the range of θ.On the part of loss 

functions, the Squared Error Loss Function (SELF) and two different forms of Weighted Squared Error Loss 

Function (WSELF) has been considered. 
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1. Introduction: A discrete random variable X is said to have Modified Power Series distribution, if its 

probability mass function (p. m .f.) pθ(x) = P(X = x) is given by, 

pθ(x) = {
a(x){g(θ)}x

f(θ)
, if x ∈ S , θ ∈  A                        

0, Otherwise.                                           
     (1) 

Where, θ is unknown parameter of the distribution,A ⊆ ℛ (the set of real numbers), a(x) > 0, S is a subset of 

the set of non-negative integers, g(θ) > 0 and f(θ) is  a function of θ such that ∑ pθ(x) = f(θ)x∈S   

As mentioned by Gupta (1974) the p. m .f. given by (1) covers a wide range of discrete distributions. When 

g(θ) = θ , (1) coincides with the class of discrete distributions as given by Roy and Mitra (1957). 

Gupta (1977), has obtained MVUE  of ϕ(θ) = θr, r ≥ 1.For values of r < 1 ,no unbiased estimator of  ϕ(θ) 

exists and hence no MVUE of ϕ(θ) exists. This is a serious limitation of this classical estimator. Singh (2021) 

obtained  Bayes Estimator of ϕ(θ) = θr, r ∈ (−∞, ∞).This is an advantage of Bayesian approach over the 

classical approach  as the  range of estimation is increased 

In this paper, Bayes Estimator of ψ(θ) = θr(1 − θ)s, r, s ∈ (−∞, ∞). have been obtained for two distributions 

which are particular cases of the  Modified Power Series distribution specified by the p. m. f. (1). This paper is 

an extension of the recent work by Singh   (2021),as when s = 0,we get estimate of θr, r ∈ (−∞, ∞). 

On the part of loss functions, the usual Squared Error Loss Function (SELF)and two different forms of the 

Weighted Squared Error Loss Function (WSELF) have been taken. 

2. Notations and results used: 

Let X1, X2, X3,… XN be a random sample of size N from the p .m. f given by (1). 
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Then, 

TN = ∑ Xi
N
i=1        (2) 

We shall use the following result as given by Abramowitz and Stegun (1964): 

Γ(x) = ∫ ux−1e−udu
∞

0
         (3) 

Γ(x)b−x = ∫ ux−1e−budu
∞

0
       (4) 

Γ(b−a)Γ(a)M(a,b,z)

Γ(b)
= ∫ ua−1(1 − 𝑢)b−a−1e−zudu

1

0
          (5) 

Where, M(a, b, z) is the Confluent Hypergeometric Function  and has a series representation given by, 

M(a, b, z) = ∑
(a)nzn

(b)nn!
∞
n=0         (6)  

Where, (a)0 = 1 amd 

(a)n = ∏ (a + i − 1)n
i=1        (7) 

For observed value  tN = ∑ xi
N
i=1  of the statistic T𝑁 = ∑ Xi

N
i=1 , the likelihood function, denoted by L(θ), is 

given by, 

L(θ) = k{g(θ)}tN{f(θ)}−N    (8) 

Where, k is function of x1, x2, x3,… xN and does not contain θ. 

Let π(θ) be the prior probability density function of θ,then the posterior posterior probability density function 

of θ ,denoted by π(θ /t𝑁 ),is given by, 

π(θ /t𝑁 ) =
L(θ)π(θ)

∫ L(θ)π(θ)dθA

        (9) 

Under the Squared Error Loss Function (SELF), L(ψ(θ), d) = (ψ(θ) − d)2,the Bayes Estimate of 

ψ(θ),denoted by ψ̂B is given by, 

ψ̂B = ∫ ψ(θ)π(θ /t𝑁 )dθ
A

        (10) 

Similarly, under the Weighted Squared Error Loss Function (WSELF), L(ψ(θ), d) = W(θ)(ψ(θ) − d)2, 

where, W(θ)  is a function of θ, the Bayes Estimate of ψ(θ),denoted by ψ̂𝑊 is given by, 

ψ̂𝑊 =
∫ W(θ)ψ(θ)π(θ /t𝑁 )dθA

∫ W(θ)π(θ /t𝑁 )dθA

        (11) 

We have taken two different forms of W(θ),as given below: 

(i). W(θ) = θ−2.The Bayes Estimate of ψ(θ),denoted by ψ̂M , is known as the Minimum Expected Loss 

(MELO) Estimate and is given by, 

ψ̂M =
∫ θ−2ψ(θ)π(θ /t𝑁 )dθ

A

∫ θ−2π(θ /t𝑁 )dθ
A

        (12) 

This loss function was used by Tummala and Sathe (1978) for estimating reliability of  certain life time 

distributions and by Zellner (1979) for estimating functions of parameters in econometric models. 

(ii). W(θ) = θ−2e−aθ.The Bayes Estimate of ψ(θ),denoted by ψ̂E , is known as the ExponentiallyWeighted 

Minimum Expected Loss (EWMELO) Estimate and is given by, 
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ψ̂E =
∫ θ−2e−aθψ(θ)π(θ /t𝑁 )dθA

∫ θ−2e−aθπ(θ /t𝑁 )dθA

        (13) 

This type of loss function was used by the author (1997) for the first time in his work for D.Phil. 

SELF and two forms of WSELF were used by Singh, the author, (1999) in the study of reliability of a 

multicomponent system   and (2010) in Bayesian Estimation of the mean and distribution function of Maxwell’s 

distribution. Recently, the author again used these loss functions   in Bayesian estimation for the MPSD (2021) 

and for estimating Loss and Risk Functions of a continuous distribution (2021). 

 

Now, we shall some special cases of the p. m. f. given by (1) and obtain corresponding Bayes Estimate of 

ψ(θ) = θr(1 − θ)s, r, s ∈ (−∞, ∞) in two different cases. 

3.GENERALIZED NEGATIVE BINOMIAL DISTRIBUTION 

(GNBD) 

We shall consider two cases for the Generalized Negative binomial distribution 

Case I: 

If we take a(x) =
nΓ(n+βx)

Γ(x+1)Γ(n+βx−x+1)
, g(θ) = θ(1 − θ)β−1, f(θ) =  (1 − θ)−n,  

S = {0,1,2 … ∞}, A = (0,1),β ≥ 0, θβ ∈ (−1,1),n being a positive integer, the corresponding discrete random 

variable X is said to have Generalized Negative Binomial distribution. 

In this case, 

L(θ) = cθtN(1 − θ)tN(β−1)+nN      (14) 

Where, c is a constant and does not involve θ 

 

Since, in this case,0 < θ < 1,we have taken two different prior distributions, namely, π1(θ) and π2(θ)  as 

given below: 

  π1(θ) = {
θp−1(1−θ)q−1

B(p,q)
, if p > 0, q > 0 ,0 < θ < 1                       

0, Otherwise.                                                                          
 (15) 

And, 

π2(θ) = {
e−bθθp−1(1−θ)q−1

B(p,q)M(p,p+q,−b)
, if p > 0, q > 0 ,0 < θ < 1 , b ≥ 0                          

0, Otherwise.                                                                                                
 (16) 

Where, 

B(p, q) =
Γ(p)Γ(q)

Γ(p+q)
                                        (17) 

The posterior p. d .f. of θ , corresponding to the prior π1(θ), denoted by π1(θ /tN),is given by, 
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π1(θ /tN) =  {
θtN+p−1(1−θ)tN(β−1)+nN+q−1

B(tN+𝑝,,(β−1)tN+nN+q)
, if p > 0, q > 0 ,0 < θ < 1                       

0, Otherwise.                                                                                                         
 (18) 

Similarly, posterior p. d .f. of θ , corresponding to the prior π2(θ), denoted by π2(θ /tN),is given by 

π2(θ /tN)

=  {
e−bθθtN+p−1(1 − θ)tN(β−1)+nN+q−1

K
, if p > 0, q > 0 ,0 < θ < 1, b ≥ 0                  (19)                                                                                      

0, Otherwise.                                                                                                                                                                                                                        

 

Where, 

 K = B(tN + p, (β − 1)tN + nN + q)M(tN + p, p + q + βtN + nN, −b)                             (20) 

Under the SELF  and corresponding to the posterior distribution given by (18), Bayes Estimate of ψ(θ) =

θr(1 − θ)s,denoted by ψ̂1B is given by, 

ψ̂1B =
B(tN+p+r,(β−1)tN+nN+q+s)

B(tN+𝑝,,(β−1)tN+nN+q)
     (21) 

Similarly, under the WSELF, when W(θ) = θ−2  and corresponding to the posterior distribution given by 

(18), the MELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂1M ,is given by, 

ψ̂1M =
B(tN+p+r−2,,(β−1)tN+nN+q+s)

B(tN+𝑝−2,,(β−1)tN+nN+q)
     (22) 

Under the WSELF, when W(θ) = θ−2e−aθ  and corresponding to the  posterior distribution given by (18), the 

EWMELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂1E is given by,  

ψ̂1E = 
B(tN+p+r−2,,(β−1)tN+nN+q+s)M2

B(tN+𝑝−2,,(β−1)tN+nN+q)M1
    (23) 

Where, 

 M1 = M(tN + p − 2, , p + q +  βtN + nN − 2, −a)                        (24) 

M2 = M(tN + p + r − 2, p + q +  βtN + nN + r + s − 2, −a)            (25) 

On the other hand, under the SELF  and corresponding to the posterior distribution given by (19), Bayes 

Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂2B ,is given by, 

ψ̂2B = 
B(tN+p+r,,(β−1)tN+nN+q+s)M4

B(tN+𝑝,,(β−1)tN+nN+q)M3
     (26)  

Where, 

 M3 = M(tN + p , p + q +  βtN + nN, −b)                        (27) 

M4 = M(tN + p + r, p + q +  βtN + nN + r + s, −b)            (28) 

Similarly, under the WSELF, when W(θ) = θ−2  and corresponding to the posterior distribution given by 

(19), the MELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂2M is given by, 

ψ̂2M =
B(tN+p+r−2,,(β−1)tN+nN+q+s)M6

B(tN+𝑝−2,,(β−1)tN+nN+q)M5
     (29) 

Where, 

 M5 = M(tN + p − 2, p + q +  βtN + nN − 2, −b)                        (30) 
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M6 = M(tN + p + r − 2, p + q +  βtN + nN + r + s − 2, −b)            (31) 

Finally, under the WSELF, when W(θ) = θ−2e−aθ  and corresponding to the  posterior distribution given by 

(19),the EWMELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂2E is given by,  

ψ̂2E = 
B(tN+p+r−2,,(β−1)tN+nN+q+s)M8

B(tN+𝑝−2,,(β−1)tN+nN+q)M7
    (32) 

Where, 

 M7 = M(tN + p − 2, p + q +  βtN + nN − 2, −(a + b))                        (33) 

M8 = M(tN + p + r − 2, p + q +  βtN + nN + r + s − 2 , −(a + b))            (34) 

Remark (1):  For s = 0  ,we get Bayes estimator of  ϕ(θ) = θr, r ∈ (−∞, ∞) as derived recently  by the 

author,(2021), while ,for r= 0  ,we get Bayes estimator of   (1 − θ)s, s ∈ (−∞, ∞) 

SPECIAL CASE: Since, for β = 1 ,the GNBD coincides with the Negative Binomial Distribution (NBD), all 

results as derived above  give, Bayes Estimate of ψ(θ) for the NBD when β = 1. Additionally ,when  β = 1 

and n =1,we get Bayes Estimate of ψ(θ) for the Geometric distribution.  

 In this case the probability mass function of Geometric distribution is given by 

pθ(x) = {
(1 − θ)θx, if x = 0,1,2, … . ; 0 < θ < 1        (35)                

0, Otherwise.                                                                  
  

 

 

Case II: 

 

If we take a(x) =
nΓ(n+βx)

Γ(x+1)Γ(n+βx−x+1)
, g(θ) = (1 − θ)θβ−1, f(θ) =  θ−n,  

S = {0,1,2 … ∞}, A = (0,1),β ≥ 0, (1 − θ)β ∈ (−1,1),n being a positive integer. We get another form of the 

Generalized Negative Binomial distribution. This form is not given in Gupta (1974) Since, in this case,0 < θ <

1,we have taken two different prior distributions, namely, π1(θ) and π2(θ)  as given in (15) and (16). 

In this case, 

L(θ) = c(1 − θ)tNθtN(β−1)+nN      (36) 

Where, c is a constant and does not involve θ 

The posterior p. d .f. of θ , corresponding to the prior π1(θ), denoted by π11(θ /tN),is given by, 

π11(θ /tN) =  {
(1−θ)tN+q−1θtN(β−1)+nN+p−1

B((β−1)tN+nN+p,tN+q)
, if p > 0, q > 0 ,0 < θ < 1                                 

0, Otherwise.                                                                                                         
 (37) 

Similarly, posterior p. d .f. of θ , corresponding to the prior π2(θ), denoted by π22(θ /tN),is given by 

π22(θ /tN)

=  {
e−bθ(1 − θ)tN+q−1θtN(β−1)+nN+p−1

C
, if p > 0, q > 0 ,0 < θ < 1, b ≥ 0                  (38)                                                                                      

0, Otherwise.                                                                                                                                                                                                                        

 

Where, 
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 C = B((β − 1)tN + nN + p, tN + q)M(p + (β − 1)tN + nN, βtN + nN + p + q, −b) (39)                             

Under the SELF  and corresponding to the posterior distribution given by (37), Bayes Estimate of ψ(θ) =

θr(1 − θ)s,denoted by ψ̂11B is given by, 

ψ̂11B =
B((β−1)tN+nN+p+r,tN+q+s)

B((β−1)tN+nN+p,tN+q)
     (40) 

Similarly, under the WSELF, when W(θ) = θ−2  and corresponding to the posterior distribution given by 

(37), the MELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂1M ,is given by, 

ψ̂11M =
B((β−1)tN+nN+p+r−2,tN+q+s)

B((β−1)tN+nN+p,tN+q)
     (41) 

Under the WSELF, when W(θ) = θ−2e−aθ  and corresponding to the  posterior distribution given by (37), the 

EWMELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂11E is given by,  

ψ̂11E =
B((β−1)tN+nN+p+r−2,tN+q+s)M10

B((β−1)tN+nN+p,tN+q)M9
     (42) 

Where, 

 M9 = M((β − 1)tN + nN + p − 2, p + q +  βtN + nN − 2, −a)                        (43) 

M10 = M((β − 1)tN + p + nN + r − 2, p + q +  βtN + nN + r + s − 2, −a)            (44) 

On the other hand, under the SELF  and corresponding to the posterior distribution given by (38), Bayes 

Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂22B ,is given by, 

ψ̂22B =
B((β−1)tN+nN+p+r,tN++q+s)M12

B((β−1)tN+nN+p,tN+q)M11
      (45)  

Where, 

 M11 = M((β − 1)tN + nN + p , p + q +  βtN + nN − b)                        (46) 

M12 = M((β − 1)tN + p + nN + r, p + q +  βtN + nN + r + s, −b)            (47) 

Similarly, under the WSELF, when W(θ) = θ−2  and corresponding to the posterior distribution given by 

(38), the MELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂22M is given by, 

ψ̂22M =
B((β−1)tN+p+nN+r−2,tN++q+s)M14

B((β−1)tN+nN+p,tN+q)M13
     (48) 

Where, 

 M13 = M((β − 1)tN + p + nN − 2, p + q +  βtN + nN − 2, −b)                        (49) 

M14 = M((β − 1)tN + p + nN + r − 2, p + q +  βtN + nN + r + s − 2, −b)            (50) 

Finally, under the WSELF, when W(θ) = θ−2e−aθ  and corresponding to the  posterior distribution given by 

(38),the EWMELO Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂22E is given by,  

ψ̂22E =
B((β−1)tN+p+nN+r−2,tN++q+s)M16

B((β−1)tN+nN+p,tN+q)M15
     (51) 

Where, 

 M15 = M((β − 1)tN + p + nN − 2, p + q +  βtN + nN − 2, −(a + b))                        (52) 

M16 = M((β − 1)tN + p + nN + r − 2, p + q +  βtN + nN + r + s − 2 , −(a + b))            (53) 
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Remark (1):  For s = 0  ,we get Bayes estimator of  ϕ(θ) = θr, r ∈ (−∞, ∞) while ,for r= 0  ,we get Bayes 

estimator of   (1 − θ)s, s ∈ (−∞, ∞) 

SPECIAL CASE: Since, for β = 1 ,the GNBD coincides with the Negative Binomial Distribution (NBD), all 

results as derived above  give, Bayes Estimate of ψ(θ) for the NBD when β = 1. Additionally ,when  β = 1 

and n =1,we get Bayes Estimate of ψ(θ) for the Geometric distribution.  

 In this case the probability mass function of Geometric distribution is given by 

pθ(x) = {
θ(1 − θ)x, if x = 0,1,2, … . ; 0 < θ < 1         (54)               

0, Otherwise.                                                                  
 

 

4.GENERALIZED LOGARITHMIC SERIES DISTRIBUTION 

(GLSD) 

We shall consider two cases for the Generalized Negative binomial distribution 

Case I: 

If we take a(x) =
Γ(βx)

Γ(x+1)Γ(βx−x+1)
, g(θ) =  θ(1 − θ)β−1, f(θ) =  −ln (1 − θ),  

S = {1,2 … ∞}, A = (0,1),β ≥ 1, θβ ∈ (0,1),n being a positive integer, the corresponding discrete random 

variable X is said to have Generalized Logarithmic Series distribution.  

In this case, 

L(θ) = c(1 − θ)tNθtN(β−1)(−ln(1 − θ))−N      (55) 

Where, c is a constant and does not involve θ 

Since in this case, 0 < θ < 1 ,we take π3(θ) as the p. d. f. of Negative Log Gamma distribution given by 

π3(θ) = {
(k+1)N+1(1−θ)k{−ln(1−θ)}N

Γ(N+1)
, if k > 0,0 < θ < 1                                         

0, Otherwise.                                                                                                     
(56)  

Where, N, a positive integer is same as the size of the random sample. 

The posterior p. d .f. of θ ,denoted by π3(θ /tN)  , is given by 

π3(θ /tN) =  {
θtN(1−θ)tN(β−1)+k

B(tN+1,(β−1)tN+k+1)
, if k > 0, ,0 < θ < 1                                                       

0, Otherwise.                                                                                                         
  (57) 

Under the SELF  and corresponding to the posterior distribution given by (57), Bayes Estimate of ψ(θ) =

θr(1 − θ)s,denoted by ψ̂3B is given by, 

ψ̂3B =
B(tN+r+1,(β−1)tN+k+s+1)

B(tN+1,(β−1)tN+k+1)
   (58) 

Similarly, under the WSELF, when W(θ) = θ−2  and corresponding to the posterior distribution given by 

(57), the MELO  Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂3M is given by, 

ψ̂3M =
B(tN+r−1,(β−1)tN+k+s+1)

B(tN−1,(β−1)tN+k+1)
   (59) 
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Under the WSELF, when W(θ) = θ−2e−aθ  and corresponding to the  posterior distribution given by (57), the 

EWMELO  Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂3E is given by, 

,  

ψ̂3E =
B(tN+r−1,(β−1)tN+k+s+1)M18

B(tN−1,(β−1)tN+k+1)M17
   (60) 

     

Where, 

 M17 = M(tN − 1, βtN + k, −a)                        (61) 

M18 = M(tN + r − 1, βtN + r + k + s, −a)            (62) 

. 

SPECIAL CASE: Since, for β = 1 ,the GLSD coincides with the Logarithmic Series Distribution (LSD), all 

results as derived above  give, Bayes Estimate of ψ(θ) = θr(1 − θ)s for the LSD when β = 1.  

In this case the probability mass function of Logarithmic Series Distribution (LSD) is given by 

pθ(x) = {

θx

x(− ln(1 − θ))
, if x = ,1,2, … . ; 0 < θ < 1         (63)               

0, Otherwise.                                                                                     

 

Case II: 

If we take a(x) =
Γ(βx)

Γ(x+1)Γ(βx−x+1)
, g(θ) =  (1 − θ)θβ−1, f(θ) =  −ln θ,  

S = {1,2 … ∞}, A = (0,1),β ≥ 1, (1 − θ)β ∈ (0,1),n being a positive integer. We get another form of the 

Generalized Logarithmic Series distribution. This form is not given in Gupta (1974)  

In this case, 

L(θ) = c(1 − θ)tNθtN(β−1)(−lnθ)−N      (64) 

Where, c is a constant and does not involve θ 

 

Since in this case, 0 < θ < 1 ,we take π31(θ) as the p. d. f. of Negative Log Gamma distribution given by 

π31(θ) = {
(k+1)N+1θk{−lnθ}N

Γ(N+1)
, if k > 0, ,0 < θ < 1                                         

0, Otherwise.                                                                                                     
(65)  

Where, N, a positive integer is same as the size of the random sample. 

The posterior p. d .f. of θ ,denoted by π31(θ /tN)  , is given by 

π31(θ /tN) =  {
(1−θ)tNθtN(β−1)+k

B(,(β−1)tN+k+1,tN+1)
, if k > 0, ,0 < θ < 1                                                       

0, Otherwise.                                                                                                         
  (66) 

Under the SELF  and corresponding to the posterior distribution given by (66), Bayes Estimate of ψ(θ) =

θr(1 − θ)s,denoted by ψ̂3B is given by, 

ψ̂31B =
B(tN+s+1,(β−1)tN+k+r+1)

B(tN+1,(β−1)tN+k+1)
   (67) 
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Similarly, under the WSELF, when W(θ) = θ−2  and corresponding to the posterior distribution given by 

(66), the MELO  Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂31M is given by, 

ψ̂31M =
B(tN+s+1,(β−1)tN+k+r−1)

B(tN+1,(β−1)tN+k−1)
   (68) 

Under the WSELF, when W(θ) = θ−2e−aθ  and corresponding to the  posterior distribution given by (66), the 

EWMELO  Estimate of ψ(θ) = θr(1 − θ)s,denoted by ψ̂31E is given by, 

,  

ψ̂31E =
B(tN+s+1,(β−1)tN+k+r−1)M20

B(tN+1,(β−1)tN+k−1)M19
   (69) 

     

Where, 

 M19 = M((β − 1)tN + k − 1, βtN + k, −a)                        (70) 

M20 = M((β − 1)tN + k + r − 1, βtN + r + k + s, −a)            (71) 

. 

SPECIAL CASE: Since, for β = 1 ,the GLSD coincides with the Logarithmic Series Distribution (LSD), all 

results as derived above  give, Bayes Estimate of ψ(θ) = θr(1 − θ)s for the LSD when β = 1.  

In this case the probability mass function of Logarithmic Series Distribution (LSD) is given by 

pθ(x) = {

(1 − θ)x

x(−lnθ)
, if x = ,1,2, … . ; 0 < θ < 1                     (72)               

0, Otherwise.                                                                                     
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